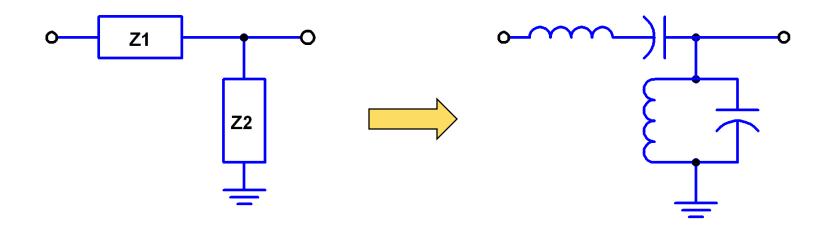
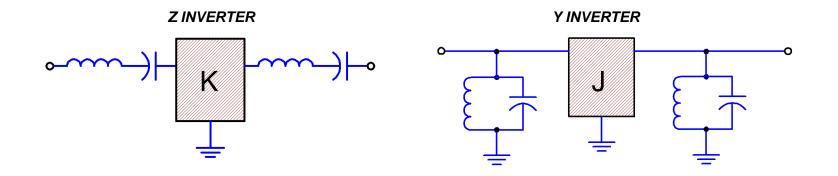

EVANESCENT MODE CIRCULAR WG FILTERS

MOTIVATION: NEED IMAGE FILTERS for X-BAND TEST-SET

X-BAND TEST-SET CONFIGURATIONS

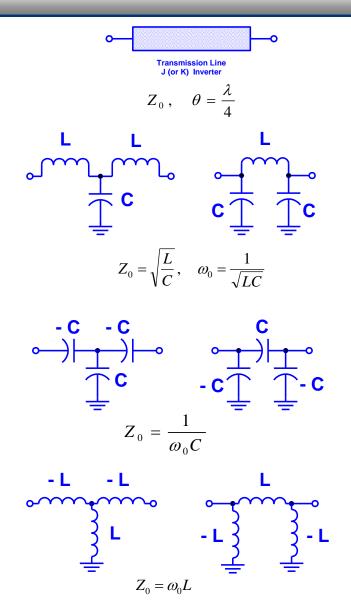

K5TRA

X-BAND TEST-SET

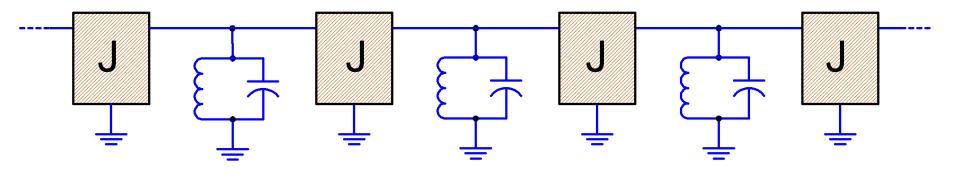


LADDER FILTER BASIC BUILDING BLOCK

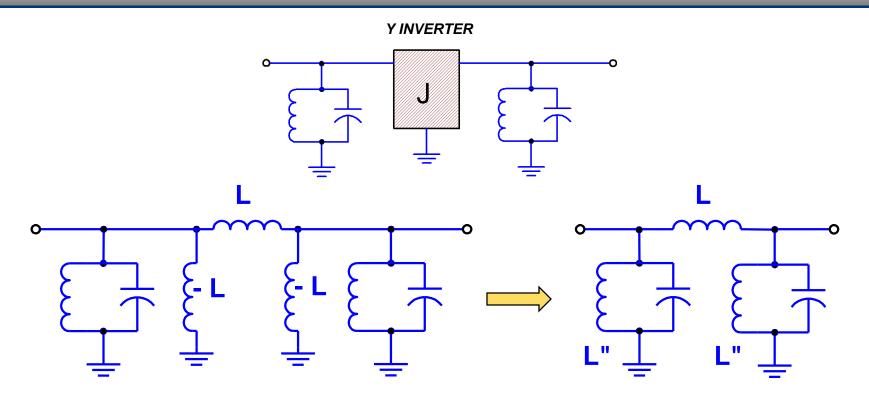
- Passband: Z1 \Rightarrow short and Z2 \Rightarrow open
- Stopband: Z1 \Rightarrow open and Z2 \Rightarrow short


J and K INVERTERS PROVIDE REUSE OF RESONATOR TYPE

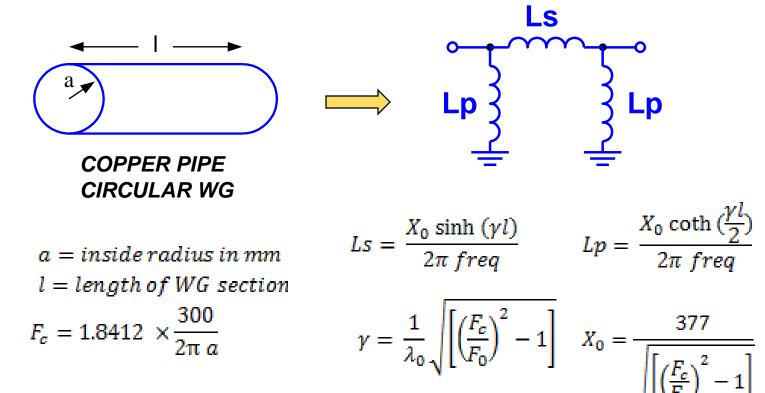
- Impedance inverter (K) with a series resonator behaves like a parallel resonator
- Admittance inverter (J) with a parallel resonator behaves like a series resonator
- Impedance/admittance inverter interface between similar resonators provides maximum stopband attenuation
- Most common impedance inverter is transmission line that is an odd multiples of $\lambda/4$


IMPEDANCE/ADMITTANCE INVERTERS

- Impedance (or admitance) inverters can be used to convert parallel resonance to a series resonance characteristic.
- The canonic impedance inverter is the $\lambda/4$ line.
- LC forms provide moderate bandwidth Z inversion.
- Capacitive T and π sections are for narrow band applications. Negative C or L is absorbed into resonator (cancels some positive C or L).

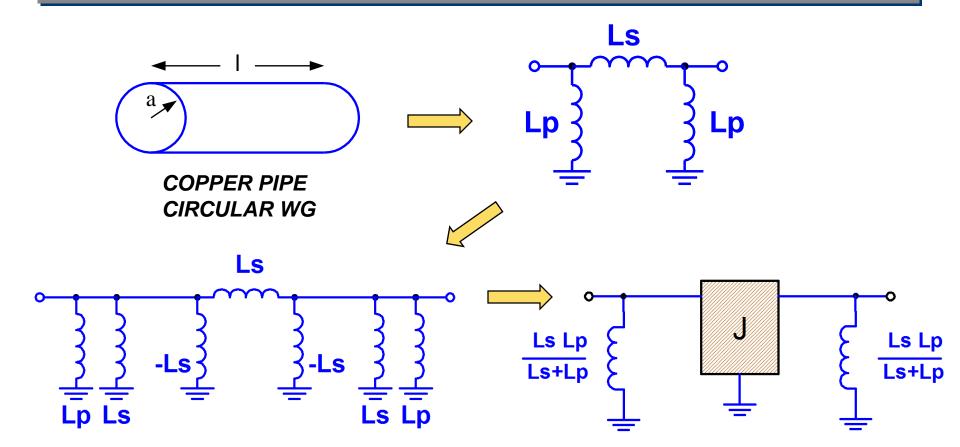

IKA

BANDPASS FILTER STRUCTURE WITH J INVERTERS


- Filters are formed as cascade of parallel resonators and inverters
- How do we realize a structure like this in WG?

BANDPASS FILTER WITH INDUCTIVE J INVERTERS

- Negative inductors of inverter cancel some of the resonator inductive susceptance.
- Inverter admittance/impedance sets coupling between resonators. In this case, coupling is set by (ω L)⁻¹


EVANESCENT WG MODEL

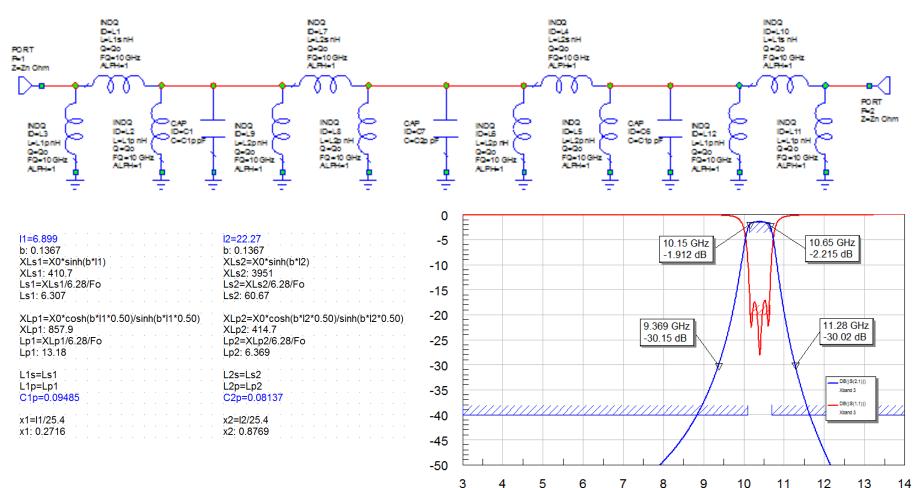
 $Xo \sim 599 \Omega$

- Operation *BELOW* TE₁₁ cutoff frequency
- Propagation falls off quickly
- Behavior is reactive (inductive)

EVANESCENT WG SECTIONS PROVIDE J INVERTER and RESONATOR L

- RESONATOR C CAN BE ADDED WITH TUNING SCREWS
- SCREW SPACING SETS Ls (SETS COUPLING)

EVANESCENT WG FILTER CONSTRUCTION


- Operation *BELOW* cutoff frequency
- 0.5" Cu pipe for X-band (actual ID = 0.565")

- 4-40 tuning screws
- Tapped holes and soldered brass nuts
- Stainless locking nuts

- Coupling loop with 2-56 tuning
- 0.25" 4-40 stand-off mounting

EVANESCENT WG FILTER ANALYSIS 6th ORDER EXAMPLE

Frequency (GHz)

INDUCTOR Qo FOUND EMPERICALLY TO BE APPROXIMATELY 200

DESIGN TABLES N= 2, 3, & 4

N=4

%BW	BW(MHz)	l1(mil)	l2(mil)	l3(mil)	C1(pF)	C2(pF)	Loss(dB)	RetLoss(dB)	F <mark>30</mark> L(GHz)	F <mark>30</mark> H(GHz)
5	500	219	886	1004	0.06527	0.05108	4.00	13.05	9.77	10.96
3	300	254	1005	1127	0.06147	0.05099	4.76	16.15	9.98	10.78
2	200	277	1082	1213	0.05970	0.05097	5.46	18.56	10.08	10.70
1	100	314	1202	1349	0.05745	0.05094	7.23	21.86	10.19	10.59
0.5	50	324	1247	1402	0.05694	0.05094	7.82	25.54	10.22	10.57

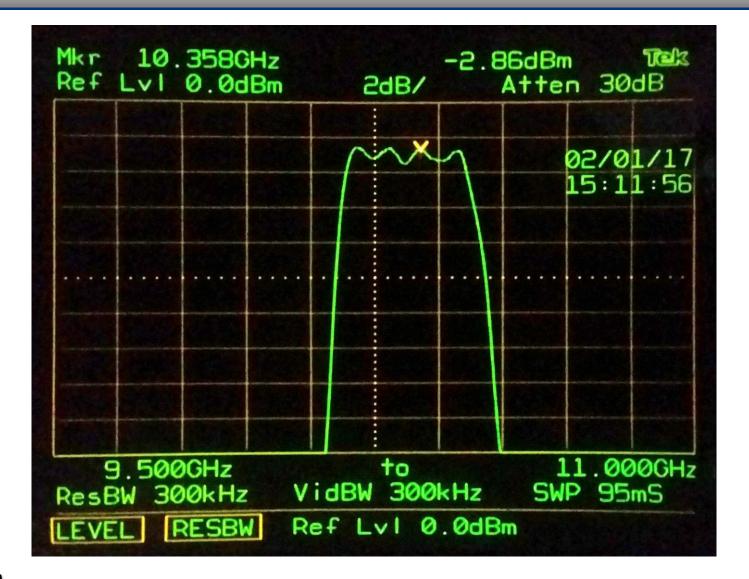
N=3

%BW	BW(MHz)	l1(mil)	l2(mil)	C1(pF)	C2(pF)	Loss(dB)	RetLoss(dB)	F <mark>30</mark> L(GHz)	F <mark>30</mark> H(GHz)
5	500	167	757	0.07403	0.05146	1.23	22.14	8.88	11.63
3	300	186	837	0.07036	0.05123	1.44	24.90	9.23	11.39
2	200	230	956	0.06393	0.05106	2.06	28.54	9.62	11.10
1	100	244	1008	0.06248	0.05102	2.25	36.20	9.74	11.00
0.5	50	269	1081	0.06027	0.05098	2.77	40.26	9.88	10.88

N=2

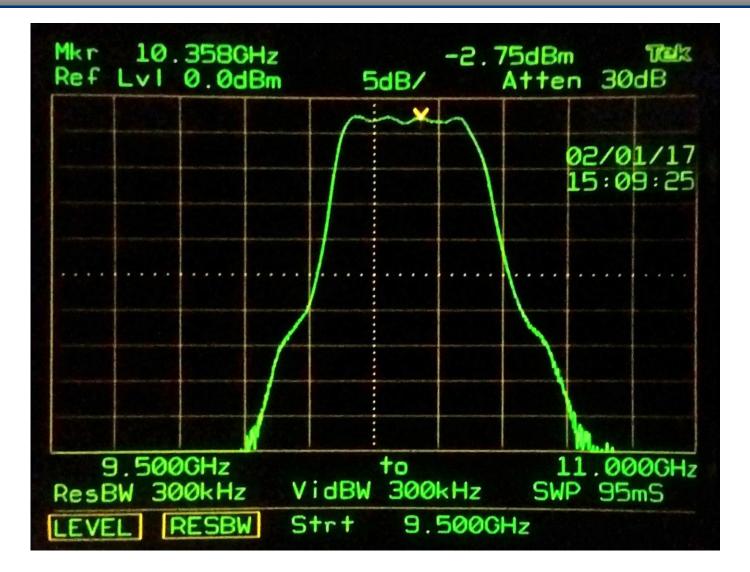
%BW	BW(MHz)	l1(mil)	l2(mil)	C1(pF)	Loss(dB)	RetLoss(dB)	F <mark>30</mark> L(GHz)	F <mark>30</mark> H(GHz)
5	500	184	672	0.07105	0.85	16.00	5.08	12.68
3	300	230	823	0.06401	1.16	17.70	8.06	11.98
2	200	267	930	0.06050	1.49	18.86	8.83	11.59
1	100	283	989	0.05927	1.59	24.73	9.11	11.43
0.5	50	304	1052	0.05797	1.86	28.11	9.35	11.27

N=6

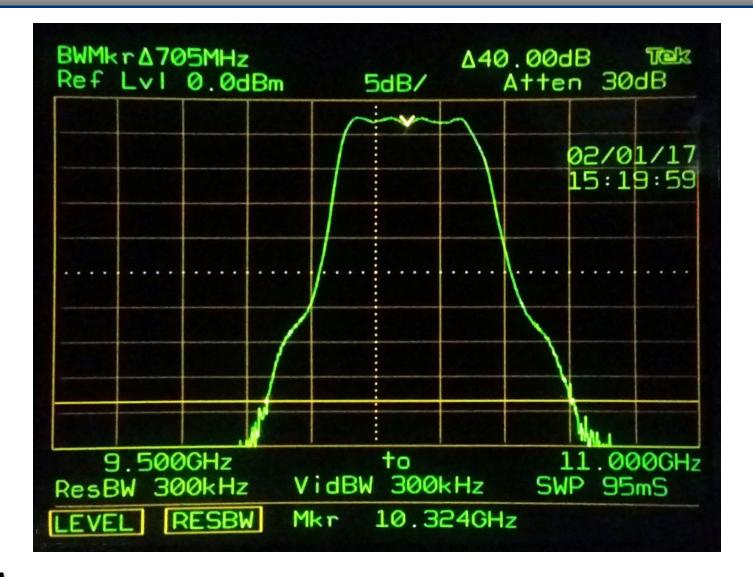

%BW	BW(MHz)	l1(mil)	l2(mil)	l3(mil)	l4(mil)	C1(pF)	C2(pF)	C3(pF)	Loss(dB)	RetLoss(dB)	F <mark>30</mark> L(GHz)	F <mark>30</mark> H(GHz)
5	500	179	822	990	1010	0.07166	0.05115	0.05103	5.26	17.61	9.93	10.83
3	300	220	953	1121	1142	0.06515	0.05102	0.05097	7.21	20.12	10.10	10.68
2	200	252	1049	1221	1245	0.06167	0.05097	0.05095	9.35	21.48	10.19	10.60
1	100	303	1193	1381	1415	0.05804	0.05094	0.05093	14.11	24.63	10.29	10.51
0.5	50	323	1254	1446	1472	0.05696	0.05094	0.05093	15.35	25.43	10.31	10.13

N=5

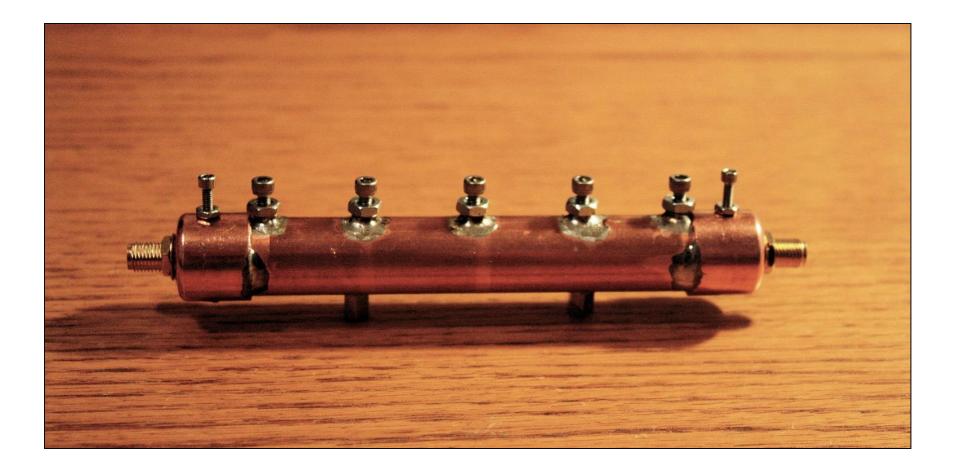
%BW	BW(MHz)	l1(mil)	l2(mil)	l3(mil)	C1(pF)	C2(pF)	C3(pF)	Loss(dB)	RetLoss(dB)	F <mark>30</mark> L(GHz)	F <mark>30</mark> H(GHz)
5	500	174	804	972	0.07291	0.05118	0.05105	3.54	16.40	9.79	10.94
3	300	211	932	1097	0.06632	0.05103	0.05098	4.83	20.10	10.01	10.76
2	200	243	1029	1196	0.06256	0.05098	0.05095	6.23	21.88	10.12	10.66
1	100	292	1170	1349	0.05868	0.05095	0.05094	9.39	24.11	10.24	10.55
0.5	50	315	1237	1431	0.05738	0.05094	0.05093	11.10	25.15	10.28	10.52


EVANESCENT WG FILTER

INSERTION LOSS, 2 dB/DIV


EVANESCENT WG FILTER

INSERTION LOSS, 5 dB/DIV



EVANESCENT WG FILTER

-40 dB BW = 705 MHz

EVANESCENT WG FILTER USED IN K5TRA X_BAND TEST SET

